Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone.

نویسندگان

  • M T Nelson
  • J B Patlak
  • J F Worley
  • N B Standen
چکیده

Resistance arteries exist in a maintained contracted state from which they can dilate or constrict depending on need. In many cases, these arteries constrict to membrane depolarization and dilate to membrane hyperpolarization and Ca-channel blockers. We discuss recent information on the regulation of arterial smooth muscle voltage-dependent Ca channels by membrane potential and vasoconstrictors and on the regulation of membrane potential and K channels by vasodilators. We show that voltage-dependent Ca channels in the steady state can be open and very sensitive to membrane potential changes in a range that occurs in resistance arteries with tone. Many synthetic and endogenous vasodilators act, at least in part, through membrane hyperpolarization caused by opening K channels. We discuss evidence that these vasodilators act on a common target, the ATP-sensitive K (KATP) channel that is inhibited by sulfonylurea drugs. We propose the following hypotheses that presently explain these findings: 1) arterial smooth muscle tone is regulated by membrane potential primarily through the voltage dependence of Ca channels; 2) many vasoconstrictors act, in part, by opening voltage-dependent Ca channels through membrane depolarization and activation by second messengers; and 3) many vasodilators work, in part, through membrane hyperpolarization caused by KATP channel activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kv2 channels oppose myogenic constriction of rat cerebral arteries.

By hyperpolarizing arterial smooth muscle, voltage-gated, Ca2+-independent K+ (Kv) channels decrease calcium influx and thus oppose constriction. However, the molecular nature of the Kv channels function in arterial smooth muscle remains controversial. Recent investigations have emphasized a predominant role of Kv1 channels in regulating arterial tone. In this study, we tested the hypothesis Kv...

متن کامل

Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries.

In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate "Ca2+ sparks" that activate large-conductance, Ca2+ -, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation ...

متن کامل

Vasoregulation by the beta1 subunit of the calcium-activated potassium channel.

Small arteries exhibit tone, a partially contracted state that is an important determinant of blood pressure. In arterial smooth muscle cells, intracellular calcium paradoxically controls both contraction and relaxation. The mechanisms by which calcium can differentially regulate diverse physiological responses within a single cell remain unresolved. Calcium-dependent relaxation is mediated by ...

متن کامل

Opposing roles of smooth muscle BK channels and ryanodine receptors

24 In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine 25 receptors (RyRs) generate “Ca sparks” that activate large conductance, Ca26 and voltage-sensitive potassium (BK) channels to oppose pressure-induced 27 (myogenic) constriction. Here, we show that BK channels and RyRs have 28 opposing roles in the regulation of arterial tone in response to sympathetic nerve 29 a...

متن کامل

Mechanism of Dopamine-mediated Activation of Bk Channels in Human Coronary Artery Smooth Muscle Cells

Coronary artery disease (CAD) is an important cause of morbidity and mortality worldwide and is associated with a sustained increase in vascular tone. Large conductance, voltage-dependent and calcium-activated potassium (K) channels, or BK channels determine membrane electrical activity in human coronary artery smooth muscle cells (HCASMCs). Their activation leads to hyperpolarization, a decrea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 259 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1990